

# WORKING WITH POSTGIS CASE: THE FLEMISH RIVER NETWORK

Rik Hendrix, VITO Data Science Hub FOSS4G Belgium Brussels, 24 Oct 2019



30/10/2019 ©VITO – Not for distribution



#### VITO DATA SCIENCE HUB







## DATA SCIENCE?



data science is NOT a standalone discipline

data science is a *team* effort

#### 30/10/2019 ©VITO – Not for distribution

Why PostGIS is awesome

lt's free lt's fast lt's fun





Why PostGIS is awesome

lt's free lt's fast lt's fun

It's multi-platform

It combines the best of 2 worldsSpatial accuracy of desktop GISProcessing of large volumes

Query language SQL close to human language

Note: all maps have been made with QGIS







# RASTER VS VECTOR: STREET GREENERY MAP ("STRAATGROENKAART")





# RASTER VS VECTOR: STREET GREENERY MAP ("STRAATGROENKAART")





## RASTER VS VECTOR: STREET GREENERY MAP ("STRAATGROENKAART")





Vector map:

- Nicer result
- More accurate
- More suitable for analytics (e.g. routing)
- Less computing power required



A great jazz solo consists of:

- 1% magic
- 99% stuff that is
  - explainable,
  - analyzable,
  - categorizeable,
  - doable.

Mark Levine, The Jazz Theory Book





## WORKING WITH POSTGIS: 99% "READ THE MANUAL", 1% EXPERIENCE

#### Calculation in 3D of 50 000 intersections of 1 plane, defined by 300 000 points, and 50 000 lines

Original code: > 1 week After changes in data model: 1 ½ hour







## LINKING THE RIVER SEGMENTS





Table river\_segments Attributes: id, name, geom, ...

```
alter table river_segments
add column id_downstream integer;
update river_segments a
   set id_downstream = b.id
   from river_segments b
   where ST StartPoint(b.geom)= ST EndPoint(a.geom)
```

HIERARCHICAL DATABASE OF RIVER SEGMENTS



## LINKING RIVER SEGMENTS: ISSUES

ISSUE 1: Start and end points do not match exactly



## **SOLUTION**



## LINKING RIVER SEGMENTS: ISSUES

ISSUE 1: Start and end points do not match exactly



#### **SOLUTION**





#### LINKING RIVER SEGMENTS: ISSUES



Only local impact. Upstream and downstream are OK.



**ISSUE 3: Connections to other river segments** 



Solution: dependent on requirements of the application.

Id\_downstream\_1 = Id\_downstream\_2 =

Side effect : you might lose the power of a relational database for some types of queries



# NEXT STEP: LINKING RUN-OFF AREAS ("AFSTROOMGEBIEDEN")





## NEXT STEP: LINKING RUN-OFF AREAS



Link every run-off area with 1 river segment (drop river segments that do not have their own run-off area).

HIERARCHICAL DATABASE OF RUN-OFF AREAS



## LINKING RIVER SEGMENTS AND RUN-OFF AREAS: POSSIBLE APPLICATIONS

- From any given point, follow the path downstream for a given distance
- Local Drain Direction map
- Find the supply area for any given river segment

This is only the beginning

•

This a starting point for analytics (supervised and unsupervised learning)





## LOCAL DRAIN DIRECTION MAP





vito

## LOCAL DRAIN DIRECTION MAP: INFORMATION LOSS WITH RASTER MAPS

#### *Problem 1: inaccurate for dense network*







#### Problem 2: more than 1 value needed for 1 cell





## FIND THE SUPPLY AREA FOR ANY GIVEN RIVER SEGMENT ("TOELEVERGEBIED")

*Hierarchical query: find the run-off area id's that make up the supply area This takes < ½ sec, even for > 10 000 results* 

```
WITH RECURSIVE ids_supply_area AS (
    SELECT id, id_downstream
    FROM runoff_areas
    WHERE id = <given_id e.g. 6033854>
    UNION ALL
    SELECT run.id, run.id_downstream
    FROM runoff_areas run, ids_supply_area sup
    WHERE run.id_downstream = sup.id
)
SELECT *
FROM ids_supply_area
```

|    | numeric (10) | numeric ( | 10)     |
|----|--------------|-----------|---------|
| 1  | 6033854      |           | 6033853 |
| 2  | 6033842      |           | 6033854 |
| 3  | 6033833      |           | 6033854 |
| 4  | 6033841      |           | 6033842 |
| 5  | 6033837      |           | 6033842 |
| 6  | 6033840      |           | 6033841 |
| 7  | 6033832      |           | 6033841 |
| 8  | 6033843      |           | 6033840 |
| 9  | 6033838      |           | 6033840 |
| 10 | 6033851      |           | 6033843 |
| 11 | 6033839      |           | 6033843 |
| 12 | 6033855      |           | 6033851 |
| 13 | 6033844      |           | 6033851 |
|    |              |           |         |



## FIND THE SUPPLY AREA FOR ANY GIVEN RIVER SEGMENT

Next step: create supply areas from run-off area id's This can take > 1 min in case of > 10 000 id's

SELECT ST\_Union (geom) AS geom
FROM runoff\_areas
WHERE <id in the list>



|    | numeric (10) | numeric (10) |
|----|--------------|--------------|
| 1  | 6033854      | 6033853      |
| 2  | 6033842      | 6033854      |
| 3  | 6033833      | 6033854      |
| 4  | 6033841      | 6033842      |
| 5  | 6033837      | 6033842      |
| 6  | 6033840      | 6033841      |
| 7  | 6033832      | 6033841      |
| 8  | 6033843      | 6033840      |
| 9  | 6033838      | 6033840      |
| 10 | 6033851      | 6033843      |
| 11 | 6033839      | 6033843      |
| 12 | 6033855      | 6033851      |
| 13 | 6033844      | 6033851      |
|    |              |              |

You can precalculate this for every river segment and store everything in a table



## BONUS: MEANDERS IN RIVERS

*For the whole of Flanders, it takes 40 seconds to identify all river segments with meanders. Possible applications: ecology, water retention (space for rivers), ...* 





PostGIS is awesome 🙂

Thank you for your attention

Questions?

<u>rik.hendrix@vito.be</u> <u>datascience@vito.be</u> <u>https://vito.be/nl/over-vito/data-science</u>



