Deep Learning and GeoSpatial Data

@o_courtin

@foss4g.be 2019

Computer Vision at scale with RoboSat.pink

Goals

Detect inconsistencies between two DataSets

Train on a small area, predict on a larger one.

DataSet Quality Analysis

Change Detection highlighter

Features extraction

RoboSat.pink

@RoboSatPink Computer Vision ecosystem for GeoSpatial Imagery

RoboSat != RoboSat.pink

https://github.com/mapbox/robosat

https://github.com/datapink/robosat.pink

https://github.com/mapbox/robosat/issues/184

Compare Predicts against alternate datasets

Pink :	Predicted by trained model
Green :	Alternate dataset
Grey :	Both agree

Pink squares : Significant differences

Command Line Interface

Tools:

- rsp cover Generate a tiles covering, in csv format: X,Y,Z
- rsp download Downloads tiles from a remote server (XYZ, WMS, or TMS)
- rsp extract Extracts GeoJSON features from OpenStreetMap .pbf
- rsp rasterize Rasterize vector features (GeoJSON or PostGIS), to raster tiles
- rsp subset Filter images in a slippy map dir using a csv tiles cover
- rsp tile Tile raster coverage
- rsp train Trains a model on a dataset
- rsp export Export a model to ONNX or Torch JIT
- rsp predict Predict masks, from given inputs and an already trained model
- rsp compare Compute composite images and/or metrics to compare several XYZ dirs
- rsp vectorize Extract simplified GeoJSON features from segmentation masks
- rsp info Print RoboSat.pink version informations

RoboSat.pink 101

https://github.com/datapink/robosat.pink/blob/master/docs/101.md

Easy to deploy

pip3 install RoboSat.pink

So all you need is :

- Imagery
- GPU
- Labels

So all you need is :

- Imagery →
- GPU →
- Labels \rightarrow

any file format readable by GDAL

- NVIDIA > 8Go RAM
 - that's often the key point

From OpenData to OpenDataSet

https://github.com/datapink/robosat.pink/blob/master/docs/from_opendata_to_opendataset.md

Unet Like with ResNet50 Encoder

Image Credit: https://divamgupta.com

Surface based semantic Loss

http://www.cs.toronto.edu/~wenjie/papers/iccv17/mattyus_etal_iccv17.pdf http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf https://arxiv.org/abs/1705.08790

Data Augmentations

https://arxiv.org/abs/1809.06839 https://github.com/albu/albumentations

More than an application, an easy to extent framework

https://github.com/datapink/robosat.pink/blob/master/docs/extensibility_by_design.md

Open Source

Request For Funding

- Increase (again) prediction accuracy :
 - on low resolution imagery
 - even with few labels
 - feature extraction when they are (really) close
 - with multibands and Data Fusion
- Add support for :
 - MultiClass
 - PointCloud data support
 - Time Series Imagery
- Improve (again) performances

Few performances Metrics

rsp train rsp download rsp tile rsp predict rsp compare rsp rasterize rsp vectorize ~5 Mp/s, -per epoch-~1 to 5 Mp/s ~5 Mp/s ~10 Mp/s ~50 Mp/s ~50 Mp/s ~50 Mp/s

8 cores CPU, single GPU (either RTX or V100), SSD

How to scale it, or improve it again ?

rsp train	add more GPU,
	reduce dataset redundancy,
	improve model, loss or optimizer

- rsp tile add more CPU use raster compression
- rsp predict export model to ONNX or JIT, then use an high performance inference solution.

Why performances matters ?

- Playful and Human Learning
- Time and money saver
- No Planet B

Computer Vision Take Away

- Industrial OSS state of art GeoSpatial Imagery framework available
- Plain OpenData can be use to train accurate model
- Performances already OK to use it for region / small country area, even on cheap GPU server
- Scale if you provide better hardware...

RoboSat.pink powered by @data_pink

From text to map, a state of art !

["The Port of Paulsboro is located on the Delaware River and Mantua Creek in and around Paulsboro, in Gloucester County, New Jersey, US, approximat ely 78 miles (126 km) from the Atlantic Ocean. Traditionally one of the n ation's busiest for marine transfer operations, notably for crude oil and petroleum products, such as jet fuel and asphalt, it is a port of entry w ith several facilities within a foreign trade zone. \nA part of the port i s being redeveloped as an adaptable deep water omniport able to handle a variety of bulk and break bulk cargo, as well as shipping containers. It is targeted to become a manufacturing/assembly center for wind turbines f or the development of wind power in New Jersey and other offshore wind po wer projects along the East Coast of the United States. The Paulsboro Mar ine Terminal, as it is known, is owned by the South Jersey Port Corporati on and operated by Holt Logistics. The first ship is expected to arrive a t the new facility in early 2017 carrying steel for NLMK. The first ship to call at the port, the Doric Warior, carrying steel for NLMK, arrived M arch 3, 2017, marking the opening of the new facility."]

Text 2 Map

Then, is this toponym, findable in a Gazetter ?

Named Entity Recognition

Then, is this toponym, findable in a Gazetter ?

Named Entity Recognition

Then, is this toponym, findable in a Gazetter ? GeoNames query

Named Entity Recognition

Then, is this toponym, findable in a Gazetter ?

GeoNames query

Named Entity Recognition

Then, is this toponym, findable in a Gazetter ?

GeoNames query

Why NLP hard ?
Let's eat grandma !

Let's eat, grandma !

Irony

« The meaning of a word is its use in the language. »

Ludwig Wittgenstein

Source: https://wiki.openstreetmap.org/wiki/OSM_Semantic_Network

FOUNDATIONS OF STATISTICAL NATURAL LANGUAGE PROCESSING

CHRISTOPHER D. MANNING AND HINRICH SCHÜTZE

NLP Open Source libs

	SPACY	NLTK	CORENLP
Programming language	Python	Python	Java / Python
Neural network models	0	8	0
Integrated word vectors	0	8	8
Multi-language support	0	0	0
Tokenization	0	0	0
Part-of-speech tagging	0	0	0
Sentence segmentation	0	0	0
Dependency parsing	0	8	0
Entity recognition	0	0	9
Entity linking	8	8	8
Coreference resolution	8	8	0

Source: https://spacy.io/usage/facts-figures

	SPACY	NLTK	CORENLP
Programming language	Python	Python	Java / Python
Neural network models	0	8	9
Integrated word vectors	0	8	8
Multi-language support	0	0	0
Tokenization	0	0	0
Part-of-speech tagging	0	0	0
Sentence segmentation	0	0	0
Dependency parsing	0	8	9
Entity recognition	0	0	0
Entity linking	8	8	8
Coreference resolution	8	8	0

Source: https://spacy.io/usage/facts-figures

SacreMoses	https://github.com/alvations/sacremoses
PyTorch Text	https://github.com/pytorch/text
DeepPavlov	https://github.com/deepmipt/DeepPavlov

mordecai full text geoparsing

github.com/openeventdata/mordecai

Perspectives

NER :

- Use more rich structured text, as dbpedia to train models
- Anything helpful for multilang handling
- Use latest papers: https://nlpprogress.com/english/named_entity_recognition.html

Gazetteer

- OCR existing maps for completion ?
- Other kind of data alowing massive completion ?

Toponym matching

- Batch to use text context
- Use others dimensions than only population, and obviously geographical one...

NLP TakeAway

NLP is harder than any others patterns recognition domains

NER softwares and models already availables

Academic NLP R&D is an hot and vivid topic

Firsts Text2Map tools arises

But still lot to do !

Extract insights from GeoSpatial data with Deep Learning

Development, Expertise, Support and Training, on :

- Computer Vision
- Natural Language Processing
- Time Series Analysis

@data_pink

www.datapink.com