

DEEP-LEARNING FOR VERY-HIGH RESOLUTION LAND-COVER MAPPING

A story about issues and difficulties of using deep learning

ANAGEO research unit at ULB

- Specialized in remote sensing and GIS
- With one deep learning expert : Nicholus Mboga
- With guest star Vero Andreo from the Argentinian Council for Science and Technology (CONICET)

Who we are

Who we are

- Used to OBIA techniques
- Development of toolchain in GRASS GIS
- Applied on both Belgian and African context
- Recent project : land cover and land use mapping for Wallonia

See presentation in afternoon session :

source : Grippa et al (2017), Remote Sensing, https://dx.doi.org/10.3390/rs904 0358

=Walous

Creating Wallonia's new very high resolution land cover maps: combining GRASS GIS OBIA and OTB pixel-based results FOSS4G 2019

M. Lennert, T. Grippa, J. Radoux, C. Bassine, B.Beaumont, P. Defourny, E. Wolff The authors would like to acknowledge the Walloon Government for the funding

Who we are

- First contact with Deep Learning : land cover mapping using current and historical imagery
- Nick
 - developed own architecture
 - experimented with combinations
 OBIA + Deep
 Learning

Mboga, N. et al (2019), Fully Convolutional Networks and Geographic Object-Based Image Analysis for the Classification of VHR Imagery. Remote Sens. 2019, 11, 597.

- It's the current cool thing !
- Studies indicate significantly better performance
- It reduces the intervention of the operator
- Hope for better transferability

• It reduces the intervention of the operator

- It reduces the intervention of the operator : <u>but how</u>?
 - Deep Neural Network = layers of « neurons »
 - In image treatment
 « neurons » = convolutional
 filters
 - Convolutional filters defined by weights in each pixel
 - Network finds best values for these weights going back and forth between original imagery and training examples => network defines by itself the filters it needs

Example : curve detecting filtre

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Apply current weights

• Hope for better transferability

ANAGEO Hackathon

- One-week internal hackathon
- Our aims / constraints
 - learn deep learning
 - experiment existing architecture(s) on other imagery
 - play around with architecture
 - test transfer learning of trained network on different images
- What we did
 - use existing code from Nick and tried three networks : Nick's original net, a modified version, own implementation of Unet

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ Keras implentation

- applied on Flanders and Cordoba imagery to test transferability

Data

- WALOUS : open data orthophotos (25cm, 16bit) + height (0,5m), labels from preliminary results of project
- Flanders : open data orthophotos (40cm, 8bit) + height (1m)
- Cordoba, Argentina : orthophotos (20cm, 8bit), no height information

Software

- Keras library using Tensorflow as backend
- Most code is about data preparation and general logistics (file i/o, bands to arrays, etc)
- Actual network definitions quite simple
- Architect of a network has to define :
 - Size of convolutions to apply (but not the weights!)
 - Number of filters per layer
 - Number of layers
 - Patch size & batch size at training
 - + a series of other possible parameters

Software

• Actual network definitions quite simple

Definition of a layer using Keras:

```
def block_1(inpt):
    x = inpt
    x_0 = ZeroPadding2D((4, 4))(x)
    x_0 = Conv2D(64, (5, 5), padding = 'valid', dilation_rate = (2,2))(x_0)
    x_0 = Activation ('relu')(x_0)
    x_0 = BatchNormalization()(x_0)
    x_0 = ZeroPadding2D((1, 1))(x_0)
    x_0 = MaxPooling2D(pool_size=(3, 3), strides=1)(x_0)
    return x_0
```

```
def block_2(inpt):
    x = inpt
    x_2 = ZeroPadding2D((2, 2))(x)
    x_2 = Conv2D(64, (3, 3), padding = 'valid', dilation_rate = (2,2))(x_2)
    x_2 = Activation ('relu')(x_2)
    x_2 = BatchNormalization()(x_2)
    x_2 = ZeroPadding2D((1, 1))(x_2)
    x_2 = MaxPooling2D(pool_size=(3, 3), strides=1)(x_2)
    return x 2
```

Software

• Actual network definitions quite simple

Combinations of layers into network (here : original network by Nick) :

x0=block_1(inp)
x1=block_1(x0)
x2=block_2(x1)
x3=block_2(x2)
x4=block_2(x3)
x5=block_2(x4)
x6=block_2(x5)

xc= Concatenate(axis = 3)([x0,x1,x2,x3,x4,x5,x6])

x7=Conv2D(nc, (1, 1))(xc)

out_p = Activation("softmax")(x7)

Results

• Different architectures

Original image

Unet

Results

- Time spent during the hackathon (estimation) :
 - 30% => Data preprocessing
 - 10% => Setting up network architecture
 - 40 % => Training networks
 - 5 % => Predictions
 - 15% => Checking outputs and back-propagation of our ideas to run new models, and again...
- Computing times
 - Preparing training data : ~ 30 minutes (24 000 training + 6 000 validation patches of 64x64 pixels)
 - Training : ~ 200 minutes
 - Prediction : ~ 1 minute per 8000x8000 tile
- Accuracies : over 0,8 overall accuracy

Results

• Transfer learning

Flanders

Argentina

Take-away messages

- Feature identification & selection replaced by architecture building / selection
- Tuning absolutely necessary
- Input data selection also an issue (include height info or not)
- Difficulty how to integrate data at different resolutions (image at 0,25m vs height at 0,5m)
- Not easy to implement an existing architecture in our code : takes care and time (one week = too short)
- Transferability limited (but was not easiest case since different imagery)
- Hardware makes a big difference (GPU) : NVDIA GeForce GTX 1080, 8 GB, Intel® Xeon® CPU E5-2690 0 @ 2.900 GHz 2.90GHz (2 processors), RAM 96.0 GB

Take-away messages

- Currently : deep learning at point of passage from research to industrialisation
- Reflection necessary on how FOSS4G community can best integrate deep learning
 - Most of the work & code = data preparation => existing GIS software ideally prepared for that
 - Actual network code very short => easily integratable into wrapper modules
- Community effort for building (& providing !) training data sets would be useful

Thanks for your attention. Any Questions ?

BACKUP SLIDES

Network architectures

NickNet

Network architectures

"AnageoNet"

Optical bands

nDSM

Patch size for training

Patch size for training 128x128

^D NIR

NIR
High-pass
3x3

NIR
High-pass
3x3
Dilation 5x5

NIR
High-pass
3x3
Dilation 7x7

NIR
High-pass
3x3
Dilation 9x9

Accuracy assessment

□ VNIR + nDSM

Performance evalutation: Overall Accuracy: 0.8266568932991265 Cohen's Kappa: 0.7547518076016747 F1-score: 0.828978052995499

Classificatio	on report:			
	precision	recall	fl-score	support
Bare soil	0.71	0.62	0.66	156769
Herbaceous	0.52	0.97	0.68	84663
Asphalt	0.47	0.16	0.24	15423
Building	0.86	0.88	0.87	309664
Coniferous	0.74	0.91	0.82	472683
Deciduous	0.96	0.80	0.87	955463
Water	0.84	0.80	0.82	5328
avg / total	0.85	0.83	0.83	1999993

Accuracy assessment

□ VNIR only

Performance evalutation: Overall Accuracy: 0.8437615296477408 Cohen's Kappa: 0.7762600622500563 F1-score: 0.8427068057583195

Classificatio	on report:			
	precision	recall	f1-score	support
Bare soil	0.76	0.80	0.78	153472
Herbaceous	0.74	0.73	0.73	83335
Asphalt	0.64	0.10	0.17	14862
Building	0.83	0.86	0.84	297859
Coniferous	0.78	0.86	0.82	463838
Deciduous	0.92	0.86	0.89	881639
Water	0.91	0.76	0.83	4988
avg / total	0.85	0.84	0.84	1899993