
A story about issues and difficulties of using deep 
learning

DEEP-LEARNING FOR VERY-
HIGH RESOLUTION LAND-
COVER MAPPING



Who we are

● ANAGEO research 
unit at ULB

● Specialized in 
remote sensing and 
GIS

● With one deep 
learning expert : 
Nicholus Mboga

● With guest star Vero 
Andreo from the  
Argentinian Council 
for Science and 
Technology 
(CONICET)

Moritz, Sabine, Vero, Taïs, Nick, Stef



Who we are

● Used to OBIA 
techniques

● Development of 
toolchain in 
GRASS GIS

● Applied on both 
Belgian and 
African context

● Recent project : 
land cover and 
land use 
mapping for 
Wallonia

source : Grippa et al (2017), 
Remote Sensing, 
https://dx.doi.org/10.3390/rs904
0358

See presentation in 
afternoon session :



Who we are

● First contact with 
Deep Learning : 
land cover 
mapping using 
current and 
historical imagery

● Nick 
– developed own 

architecture
– experimented with 

combinations 
OBIA + Deep 
Learning

Mboga, N. et al (2019), Fully 
Convolutional Networks and Geographic 
Object-Based Image Analysis for the 
Classification of VHR Imagery. Remote 
Sens. 2019, 11, 597.

http://pasteca.africamuseum.be/



Why Deep Learning

● It's the current cool thing !
● Studies indicate significantly better performance
● It reduces the intervention of the operator
● Hope for better transferability



Why Deep Learning

● It reduces the intervention of the operator

Land cover mapFeature 
extraction & 

selection

Remote sensing 
imagery

Classification

Deep 
Neural Network

Land cover mapRemote sensing 
imagery

Classification

FROM

TO

Operator



Why Deep Learning

● It reduces the intervention 
of the operator : but how ?
– Deep Neural Network  = 

layers of « neurons » 

– In image treatment 
« neurons » = convolutional 
filters

– Convolutional filters defined 
by weights in each pixel

– Network finds best values for 
these weights going back and 
forth between original 
imagery and training 
examples => network defines 
by itself the filters it needs

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-
Understanding-Convolutional-Neural-Networks/

Example : curve detecting filtre

Apply current weights

Update weights

Test

Layer 1 Layer 2



Why Deep Learning

● Hope for better transferability

FROM

TO



ANAGEO Hackathon
● One-week internal hackathon
● Our aims / constraints

– learn deep learning

– experiment existing architecture(s) on other imagery

– play around with architecture

– test transfer learning of trained network on different images

● What we did
– use existing code from Nick and tried three networks : Nick's original 

net, a modified version, own implementation of Unet

– trained and applied on Walloon imagery using WALOUS results as 
training data (see presentation this afternoon on WALOUS)

– applied on Flanders and Cordoba imagery to test transferability

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
Keras implentation : 
https://gist.github.com/hlamba28/6073e8ef011a1d47080f67
522018d7e4

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://gist.github.com/hlamba28/6073e8ef011a1d47080f67522018d7e4
https://gist.github.com/hlamba28/6073e8ef011a1d47080f67522018d7e4


Data

● WALOUS : open data  
orthophotos (25cm, 
16bit) + height (0,5m), 
labels from preliminary 
results of project

● Flanders : open data 
orthophotos (40cm, 
8bit) + height (1m)

● Cordoba, Argentina : 
orthophotos (20cm, 
8bit), no height 
information



Software

● Keras library using Tensorflow as backend
● Most code is about data preparation and general logistics (file 

i/o, bands to arrays, etc)
● Actual network definitions quite simple
● Architect of a network has to define :

– Size of convolutions to apply (but not the weights!)

– Number of filters per layer

– Number of layers

– Patch size & batch size at training

– + a series of other possible parameters



Software

● Actual network definitions quite simple

def block_1(inpt):
x = inpt
x_0 = ZeroPadding2D((4, 4))(x)
x_0 = Conv2D(64, (5, 5), padding = 'valid', dilation_rate = (2,2))(x_0)

    x_0 = Activation ('relu')(x_0)
    x_0 = BatchNormalization()(x_0) 

x_0 = ZeroPadding2D((1, 1))(x_0)
x_0 = MaxPooling2D(pool_size=(3, 3),strides=1)(x_0)

    return x_0

Definition of a layer using Keras:

def block_2(inpt):
x = inpt
x_2 = ZeroPadding2D((2, 2))(x)
x_2 = Conv2D(64, (3, 3), padding = 'valid', dilation_rate = (2,2))(x_2)

    x_2 = Activation ('relu')(x_2)
    x_2 = BatchNormalization()(x_2) 

x_2 = ZeroPadding2D((1, 1))(x_2)
x_2 = MaxPooling2D(pool_size=(3, 3),strides=1)(x_2)

    return x_2



Software

● Actual network definitions quite simple

    x0=block_1(inp)
    x1=block_1(x0)
    x2=block_2(x1)
    x3=block_2(x2)
    x4=block_2(x3)
    x5=block_2(x4)
    x6=block_2(x5)

xc= Concatenate(axis = 3)([x0,x1,x2,x3,x4,x5,x6])
    

x7=Conv2D(nc, (1, 1))(xc)

out_p = Activation("softmax")(x7)

Combinations of layers into network (here : original network by Nick) :



Results

● Different architectures
Original image Nick's net without height UnetNick's net with height



Results

● Time spent during the hackathon (estimation) :
– 30% => Data preprocessing

– 10% => Setting up network architecture

– 40 % => Training networks

– 5 % => Predictions

– 15% => Checking outputs and back-propagation of our ideas to run new 
models, and again…

● Computing times
– Preparing training data : ~ 30 minutes (24 000 training + 6 000 

validation patches of 64x64 pixels)

– Training : ~ 200 minutes

– Prediction : ~ 1 minute per 8000x8000 tile

● Accuracies : over 0,8 overall accuracy



Results

● Transfer learning

Flanders

Argentina



Take-away messages

● Feature identification & selection replaced by architecture 
building / selection

● Tuning absolutely necessary
● Input data selection also an issue (include height info or not)
● Difficulty how to integrate data at different resolutions (image 

at 0,25m vs height at 0,5m)
● Not easy to implement an existing architecture in our code : 

takes care and time (one week = too short)
● Transferability limited (but was not easiest case since 

different imagery)
● Hardware makes a big difference (GPU) : NVDIA GeForce GTX 1080, 

8 GB, Intel® Xeon® CPU E5-2690 0 @ 2.900 GHz 2.90GHz (2 processors), RAM 
96.0 GB



Take-away messages

● Currently : deep learning at point of passage from research to 
industrialisation

● Reflection necessary on how FOSS4G community can best 
integrate deep learning
– Most of the work & code = data preparation => existing GIS software 

ideally prepared for that

– Actual network code very short => easily integratable into wrapper 
modules

● Community effort for building (& providing !) training data 
sets would be useful



Thanks for your attention. 
Any Questions ?



BACKUP SLIDES



Network architectures

 NickNet



Network architectures

 “AnageoNet”



Optical bands



nDSM



Fully labelled reference 
data



Patch size for training



Patch size for training
128x128



Patch size for training
64x64



ATROUS

 NIR



ATROUS

 NIR
 High-pass
 3x3



ATROUS

 NIR
 High-pass
 3x3
 Dilation 5x5



ATROUS

 NIR
 High-pass
 3x3
 Dilation 7x7



ATROUS

 NIR
 High-pass
 3x3
 Dilation 9x9



 VNIR + nDSM

Accuracy assessment



 VNIR only

Accuracy assessment


	Diapo 1
	Thanks for your attention. Any Questions ?
	Diapo 3
	Diapo 4
	Why Deep Learning
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Network architectures
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	ATROUS
	ATROUS
	ATROUS
	ATROUS
	ATROUS
	Accuracy assessment_clipboard0
	Accuracy assessment

