=Walous

Creating Wallonia's new very high resolution land cover maps: combining GRASS GIS OBIA and OTB pixel-based results FOSS4G-BE 2019

M. Lennert, T. Grippa, J. Radoux, C. Bassine, B.Beaumont, P. Defourny, E. Wolff

The authors would like to acknowledge the Walloon Government for the funding of the project WALOUS.

Context : Project

- Need for new land cover and land use maps of Wallonia
- Desire of the administration to obtain not only products, but methods
- Method should be open, reproducible and easily understandable by the administration
- Different existing research projects of the participating universities provided elements of methods
- Results have to be compliant both with user needs and with EU INSPIRE directive

Objectives

=Walous

Compromises between objectives as preferred by users

- Intense interaction with potential users to define needs and specifications
- Work on defining :
 - Legend
 - Temporal resolution
 - Overall accuracy threshold
 - Minimum mapping unit
- Current results of process :
 - OA : 85 %
 - MMU : 15m2
 - Update frequency : 3-5 years

Data

- 25cm orthophotos (RGB + NIR)
 - 2018
 - photomosaic from images taken during different flights
 - stratification by different dates and cameras
- nDSM (height layer) derived from the orthophotos
- Auxiliary vector data (buildings, roads, waterways, forests, agricultural fields)
 - Not always up to date
 - Not easily usable (e.g. roads only as axes, not polygons)
- Total size of dataset ~ 2.5TB

Method

=Walous

SPW

Method : OBIA

- GRASS GIS
- Scripts using GRASS GIS Python API
- R for machine learning classifier
- HPC application (shared ICT Services Centre, Université Libre de Bruxelles) : highly parallelized

Wallonie service public

SPW

Method : OBIA

=Walous

- Cutlines for tile creation (*i.cutlines*)
- Superpixels for acceleration (*i.superpixels.slic*)
- Spatially partitioned unsupervised parameter optimisation (*i.segment.uspo*)
- Automatic selection of training objects based on existing databases
- Random forest classifier (*v.class.mlR*)

ervice public

Method : Pixel-based

- One main product based on the 25 cm orthophotos + nDSM
- Tools
 - Orfeo ToolBox (OTB) + Python
 - HPC (CÉCI, F.R.S.-FNRS Grant No. 2.5020.11 and Walloon Region)
- Main steps
 - Mean shift smoothing (Comaniciu and Meer 2002)
 - Reference dataset compiled from existing 2m LC map, nDSM and shadows derived from nDSM
 - Reference dataset eroded using multiclass mathematical morphology operator (Radoux et al. 2014).
 - Classification with height as a priori probability

Method : Pixel-based

=Walous

Sentinel-2, Forest classification

SEN2AGRI : black = no crops

- Other pixel-based layers using Sentinel-2 :
 - Landcover based on two dates allowing discrimination of vegetation(e.g. deciduous vs coniferous)
 - Multitemporal SEN2AGRI toolbox product (http://www.esa-sen2agri.org/) for crop identification

Method : Fusion

- Combine strengths of each method
- Input :
 - Classes and class probabilities
 - Some auxiliary data
- Test of three methods
 - Pixel-based
 - Rule-based (as benchmark, but difficult to generalize)
 - Dempster-Shafer
 - Object-based :
 - Machine learning (Random Forest)

=Walous

Results : Classification

OBIA : Sharp building edges, but over-segmentation for vegetation => higher uncertainty (darker color)

Per pixel : Salt-and-pepper effect and object delineation issues

- Each classification has its strengths...
 - OBIA : shapes of objects (e.g. urban) + smoothness
 - Per-pixel : vegetation
- ... but also weaknesses :
 - OBIA : oversegmentation for vegetation
 - Per-pixel : salt-and-pepper effect, object delineation

Results : Fusion

Objectbased

Dempster-Shafer

=Walous

- Fusion methods :
 - Object-based :
 - smoother with sharp edges
 - Dempster-Shafer :
 - difficulties with multiple resolutions
 - thematically sometimes better
- Difficulty with class
 « arable land » :
 - Multitemporal from Sentinel, so only available at 10m resolution
- Semi-automated approach OA : 0.87 (8 classes)
 - Will be improved with manual consolidation

UCLouvain UL

Discussion

- Fusion provides qualitative improvement over individual classifications
- Object-based, machine learning approach seems most efficient
- Accuracy of the inputs into the fusion is major determinant of the quality of results
- => Iterative approach : back and forth between fusion and original classifications

Contributions to FOSS4G

- Project has contributed to the development of FOSS tools
- A general heavy-duty real-life test of the GRASS GIS OBIA pipeline
- Enhancement of existing modules :
 - i.segment.uspo
 - i.segment.stats
 - i.cutlines
 - v.class.mlR
 - etc
- Development of new modules :
 - r.texture.tiled

OBIA HPC scripts available on github : https://github.com/mlennert/WALOUS

Perspectives

=Walous

From land cover-based landscape metrics to land use

- Finalization of entire automated approach
- Manual correction of land cover map => very high quality product
- Integrate LC information into
 - Domain-specific polygons
 - Automated process for land use mapping
- Products should be available as open data
- Future work :
 - Updating methodology
 - Use results as input for deep learning approach

Thank you for your attention!!! contact@walous.be

