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Context : Project
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● Need for new land cover and land use maps of Wallonia
● Desire of the administration to obtain not only products, but 

methods
● Method should be open, reproducible and easily 

understandable by the administration
● Different existing research projects of the participating 

universities provided elements of methods
● Results have to be compliant both with user needs and with EU 

INSPIRE directive



Objectives
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● Intense interaction with 
potential users to define 
needs and specifications

● Work on defining :
● Legend
● Temporal resolution
● Overall accuracy threshold
● Minimum mapping unit

● Current results of process :
● OA : 85 %
● MMU : 15m2
● Update frequency : 3-5 years

Compromises between objectives as preferred by users

Proposed land cover legend



Data
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● 25cm orthophotos (RGB + NIR)
● 2018
● photomosaic from images taken 

during different flights
● stratification by different dates 

and cameras
● nDSM (height layer) derived 

from the orthophotos
● Auxiliary vector data (buildings, 

roads, waterways, forests, 
agricultural fields)
● Not always up to date
● Not easily usable (e.g. roads only 

as axes, not polygons)
● Total size of dataset ~ 2.5TB



Method
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Automated OBIA
Automated pixel-based

Semi-automated fusion



Method : OBIA
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● GRASS GIS
● Scripts using GRASS GIS 

Python API
● R for machine learning 

classifier
● HPC application (shared ICT 

Services Centre, Université Libre 
de Bruxelles) : highly 
parallelized

source : Grippa et al (2017), Remote Sensing, 
https://dx.doi.org/10.3390/rs9040358



Method : OBIA
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● Cutlines for tile creation 
(i.cutlines)

● Superpixels for 
acceleration (i.superpixels.slic)

● Spatially partitioned 
unsupervised parameter 
optimisation (i.segment.uspo)

● Automatic selection of 
training objects based on 
existing databases

● Random forest classifier 
(v.class.mlR)

Cutlines

Spatial variation of 
« optimal » 
segmentation 
parameter

source : Georganos et al (2018), Remote Sensing, 
https://doi.org/10.3390/rs10091440



Method : Pixel-based
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● One main product based on the 
25 cm orthophotos + nDSM

● Tools
● Orfeo ToolBox (OTB) + Python
● HPC (CÉCI, F.R.S.-FNRS Grant No. 

2.5020.11 and Walloon Region)
● Main steps

● Mean shift smoothing (Comaniciu and 
Meer 2002)

● Reference dataset compiled from 
existing 2m LC map, nDSM and 
shadows derived from nDSM

● Reference dataset eroded using 
multiclass mathematical morphology 
operator (Radoux et al. 2014).

● Classification with height as a priori 
probability

+



Method : Pixel-based
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● Other pixel-based layers 
using Sentinel-2 :
● Landcover based on two 

dates allowing 
discrimination of 
vegetation(e.g. 
deciduous vs coniferous)

● Multitemporal SEN2AGRI 
toolbox product 
(http://www.esa-sen2agri.org/) 
for crop identification

SEN2AGRI : black = no crops

Sentinel-2, Forest classification



Method : Fusion
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● Combine strengths of each 
method

● Input :
● Classes and class 

probabilities
● Some auxiliary data

● Test of three methods
● Pixel-based

● Rule-based (as 
benchmark, but difficult to 
generalize)

● Dempster-Shafer
● Object-based :

● Machine learning 
(Random Forest)

OBIA
Pixel

0.25m
Pixel
10m

Pixel
Crop Aux

Final automated
classification



Results : Classification
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● Each classification has its 
strengths...
● OBIA : shapes of objects 

(e.g. urban) + smoothness
● Per-pixel : vegetation

● … but also weaknesses :
● OBIA : oversegmentation for 

vegetation
● Per-pixel : salt-and-pepper 

effect, object delineation
Per pixel : Salt-and-pepper effect 

and object delineation issues

OBIA : Sharp building edges, but 
over-segmentation for vegetation 

=> higher uncertainty (darker color)



Results : Fusion
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● Fusion methods :
● Object-based : 

● smoother with sharp edges
● Dempster-Shafer :

● difficulties with multiple 
resolutions

● thematically  sometimes 
better

● Difficulty with class 
« arable land » :
● Multitemporal from 

Sentinel, so only available 
at 10m resolution

● Semi-automated approach 
OA : 0.87 (8 classes)
● Will be improved with manual 

consolidation
Dempster-

Shafer

Object-
based



Discussion
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● Fusion provides qualitative 
improvement over 
individual classifications

● Object-based, machine 
learning approach seems 
most efficient

● Accuracy of the inputs into 
the fusion is major 
determinant of the quality 
of results

● => Iterative approach : 
back and forth between 
fusion and original 
classifications

OBIA Pixel

Fusion

Validation



Contributions to FOSS4G
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● Project has contributed to the 
development of FOSS tools

● A general heavy-duty real-life 
test of the GRASS GIS OBIA 
pipeline

● Enhancement of existing 
modules :
● i.segment.uspo
● i.segment.stats
● i.cutlines
● v.class.mlR
● etc

● Development of new 
modules :
● r.texture.tiled

https://github.com/mlennert/WALOUS
OBIA HPC scripts available on github :



Perspectives
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● Finalization of entire 
automated approach

● Manual correction of land 
cover map => very high 
quality product

● Integrate LC information 
into
● Domain-specific polygons
● Automated process for land use 

mapping
● Products should be 

available as open data
● Future work :

● Updating methodology
● Use results as input for deep 

learning approach

Land cover aggregated in 
domain-specific polygons

From land cover-based landscape 
metrics to land use



Thank you for your attention!!!

contact@walous.be 
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https://github.com/mlennert/WALOUS
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